
Quantification of Automatic Speech Recognition System Performance
on d/Deaf and Hard of Hearing Speech

Robin Zhao, BS ; Anna S.G. Choi, MS; Allison Koenecke, PhD; Anaïs Rameau, MD, MPhil, MS

Objective: To evaluate the performance of commercial automatic speech recognition (ASR) systems on d/Deaf and hard-
of-hearing (d/Dhh) speech.

Methods: A corpus containing 850 audio files of d/Dhh and normal hearing (NH) speech from the University of Memphis
Speech Perception Assessment Laboratory was tested on four speech-to-text application program interfaces (APIs): Amazon
Web Services, Microsoft Azure, Google Chirp, and OpenAI Whisper. We quantified the Word Error Rate (WER) of API transcrip-
tions for 24 d/Dhh and nine NH participants and performed subgroup analysis by speech intelligibility classification (SIC),
hearing loss (HL) onset, and primary communication mode.

Results: Mean WER averaged across APIs was 10 times higher for the d/Dhh group (52.6%) than the NH group (5.0%).
APIs performed significantly worse for “low” and “medium” SIC (85.9% and 46.6% WER, respectively) as compared to “high”
SIC group (9.5% WER, comparable to NH group). APIs performed significantly worse for speakers with prelingual HL relative
to postlingual HL (80.5% and 37.1% WER, respectively). APIs performed significantly worse for speakers primarily communi-
cating with sign language (70.2% WER) relative to speakers with both oral and sign language communication (51.5%) or oral
communication only (19.7%).

Conclusion: Commercial ASR systems underperform for d/Dhh individuals, especially those with “low” and “medium”
SIC, prelingual onset of HL, and sign language as primary communication mode. This contrasts with Big Tech companies’ prom-
ises of accessibility, indicating the need for ASR systems ethically trained on heterogeneous d/Dhh speech data.
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INTRODUCTION
Artificial intelligence (AI) applied to speech data has

accelerated significantly in the past two decades and
has fueled the development of high performance auto-
matic speech recognition (ASR) services that convert spo-
ken language into text using machine learning (ML).
Mostly developed by large technology companies, ASR
systems are already integrated into everyday life for end

users via speech-to-text messaging, “smart home”
devices, the Internet of Things, closed captioning,
voicemail transcription, and more. ASR technology holds
the promise to increase productivity and digital accessi-
bility and is marketed as such. However, ASR systems
continue to be plagued by disparate performance for
speakers of different languages, dialects, and accents.1

There are also concerning findings of racial disparities
with state-of-the-art commercial ASR systems, with sig-
nificantly higher word error rates for Black speakers.2 Of
relevance to otolaryngology—head and neck surgery, com-
mercial ASR systems have been found to perform less
well on speech produced with dysphonic voices.3,4

Research on bias in Voice AI/ML models regarding the
d/Deaf and hard-of-hearing (d/Dhh) community has not yet
been thoroughly investigated. No study to date in
otolaryngology—head and neck surgery has evaluated ASR
performance on speech from individuals with hearing loss
(HL). The interplay between speech production and hearing
function is, however, well studied in our literature.5–7 To fol-
low the cultural norms of the Deaf community, we use the
terminology Deaf, deaf, or hard of hearing (d/Dhh) to
encompass Deaf (capital D) people who prefer to communi-
cate with sign language and identify themselves as cultur-
ally Deaf, and deaf (lower case d) and hard of hearing
individuals who have HL and may not identify as culturally
Deaf.8,9 Due to lack of or less feedback on their produced
speech, d/Dhh people may produce speech of variable
intelligibility.10–12 Furthermore, there are notable features
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distinct to the d/Dhh population, including omission, substi-
tution, place of articulation errors, and other voice charac-
teristics such as harshness, breathiness, and hyper-and
hypo-nasality.13,14 ASR systems are generally trained on
speech data from hearing people,15 and a handful of studies
from a single institution auditing outdated ASR systems’
performance on speech from individuals from d/Dhh com-
munities found they performed poorly. These studies were
published over 5 years ago and focused on three ASR out-
dated systems (Microsoft Translator Speech API,16 Presen-
tation Translator for Microsoft PowerPoint,17 and IBM
Watson Speech to Text18), finding high error rates for
speech from d/Dhh people, and unpredictable performance,
even when the d/Dhh individual was categorized as having
“good” speech intelligibility by a speech-language
pathologist.12,19

Here, we conduct an algorithmic audit and evaluate
the performance of four state-of-the-art commercial ASR
systems’ APIs created by Amazon, Google, Microsoft, and
OpenAI on transcribed speech uttered by individuals in the
d/Dhh community. We do so by quantifying the Word Error
Rate (WER) and comparing it to transcribed speech from
individuals with normal hearing (NH) with a pure-tone
average better than 20 dB hearing level, using an open-
access dataset from the Speech Perception Assessment Lab-
oratory (SPAL) at the University of Memphis.15 We empha-
size that the d/Dhh community is not a monolith, and study
API performance on d/Dhh speakers heterogeneous by
speech intelligibility classification (SIC), onset of HL, and
primary mode of communication. Our primary hypothesis is
that state-of-the-art commercial ASR systems perform sig-
nificantly worse on speech from d/Dhh speakers with lower
SIC, relative to high SIC and NH speakers. Our secondary
hypotheses are that ASR systems perform worse on speech
from d/Dhh speakers with prelingual onset of HL (relative
to postlingual onset of HL) due to lack of previous exposure
to oral speech and speech development, and that ASR sys-
tems will perform worse on speech from d/Dhh speakers
whose primary mode of communication includes sign lan-
guage, relative to oral communication. Furthermore, we
comment on the concerning performance of even the
highest-performing ASR API systems.

MATERIALS AND METHODS

Data Acquisition
We used the corpus of d/Dhh speech from SPAL at the Uni-

versity of Memphis,15 which provides audio recordings of US-
based d/Dhh and NH speakers reading comparable passages,
along with corresponding speaker demographic information
(including age, gender, age of HL onset, start age of amplification
use, type and model of amplification, SIC, and communication
mode). While the corpus contains 850 unique audio files, we
restricted files to a size of less than 25 megabyte (MB) to comply
with maximum ASR input size limits for OpenAI Whisper
(Table S1). The resulting 484 audio files were used in our ensu-
ing analyses (comprising 291 d/Dhh and 193 NH audio files). On
average, the d/Dhh participants each produced 12.1 audio files
(one file per read passage), and the NH participants each pro-
duced 21.4 audio files. Additional details on the unrestricted cor-
pus are detailed in the Tables S1 and S2 including transcription

file size and subjects’ demographic details. Table S3 shows com-
parable results to our main findings with and without 25 MB size
limit on the transcription files. All code and transcription data
are open access via our public repository: https://github.com/
koenecke/ASR_dDhh_performance.

Table I depicts the characteristics of the 31 General American
English-speaking participants in our analysis, comprising 24 d/Dhh
participants and nine NH participants. The d/Dhh group had over-
all poor speech production capabilities based on the Computerized
Articulation and Phonology Evaluation System (CAPES), while NH
participants received a normal range on their CAPES test. SIC was
performed by two experienced listeners through the SPAL who
rated the d/Dhh speech from 0 to 7, with 0 indicating completely
unintelligible and 7 indicating extremely intelligible. The SIC
scores were then classified into three categories: high (rating of 6 or
7), medium (rating of 4 or 5), and low (rating of 1, 2, or 3). In our
included data, 4 d/Dhh speakers were classified as having high
intelligibility, 10 with medium intelligibility, and 10 with low intel-
ligibility. The onset of HL was categorized into two groups,
prelingual and postlingual. Ten d/Dhh speakers were classified as
having prelingual HL onset and 14 d/Dhh speakers with post-
lingual HL onset. Communication mode was categorized into three
groups: oral only, oral and sign, and sign only; d/Dhh speakers pre-
dominantly consisted of individuals who sign (n = 3, 10, and
11, respectively). The d/Dhh participants’ ages ranged from 30 to
75 years, with a median age of 54 (IQR = 47.0–62.0), and com-
prised 18 female and six male participants. The NH participants’
ages ranged from 15 to 51 years, with a median age of
24 (IQR = 23.0–25.0) and comprised five female and four male par-
ticipants. We adjusted for age and gender differences between
groups in our analyses. Both groups reported good physical health
with no physical, mental, cognitive, or emotional limitations. See
Table S2 for demographic analysis before the exclusion of partici-
pants for d/Dhh and NH groups.

Automatic Speech Recognition Collection
This study used Python (version 3.10.9) scripts to input

audio files and generate text transcriptions from four ASR APIs:

TABLE I.
Demographics (n = 31).

Characteristics

Participants, No. (%) (N = 31)

d/Deaf and Hard of
Hearing (N = 24)

Normal
Hearing (N = 9)

Age, median (IQR) 54 (47.0–62.0) 24 (23.0–25.0)

Sex assigned at birth

Female 18 (75.0) 5 (55.6)

Male 6 (25.0) 4 (44.4)

Speech intelligibility classification

High 4 (16.7)

Medium 10 (41.7)

Low 10 (41.7)

Onset of hearing loss

Post 14 (58.3)

Pre 10 (41.7)

Communication mode

Oral 3 (12.5)

Oral and sign 10 (41.7)

Sign only 11 (45.8)
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Amazon Web Services (AWS), Google Chirp, Microsoft Azure,
and OpenAI Whisper. Data collection opt out was confirmed for
all APIs to ensure the SPAL audio files were not used by the
ASR services. All APIs were run during the same week in
October 2023, and with comparable settings, that is, specifying
English as the language of interest. Some ASR services failed to
generate a transcription for certain audio files, which we treated
as a transcription with no text, and included in our analysis. Fur-
ther details are available in the Data S1.

Transcription Processing
To determine the quality of ASR-generated transcriptions,

we compared them to an established ground truth transcription
of what is truly being uttered in each audio file. The SPAL
dataset provided such ground truth data with the text passages
read by each speaker, and we secondarily reviewed these ground
truth transcriptions for faithfulness to the audio recordings.

To ensure that we did not inappropriately penalize any
ASRs for different treatment of similar phrases, we performed
industry-standard text cleaning using a Python script applied to
both the ground truth transcriptions and the ASR-generated
transcription. For example, we removed filler words (such as
“um” or “uh”) and word fragments (such as “h-” from “hello”),
and standardized spellings of comparable words (e.g., “okay” and
“ok” are considered the same). Additional details of text cleaning
are available in the Data S1 and Table S4.

Word Error Rate Calculation
We computed ASR performance using the WER metric,

using the Python jiwer package (version 3.0.3). This metric com-
pares the ASR transcription output with the ground truth tran-
scription in terms of the number of words being inserted (I),
deleted (D), and substituted (S), normalized by the total number
of words in the ground truth transcript (N).

WER¼SþDþ I
N

Comparable WER values of read speech for NH populations
range from 2% to 20%,20 and prior work on d/Dhh WERs ranged
from 51% to 97%.19

Data Analysis
We performed descriptive analysis with Welch 2-sample

t tests, analysis of variance (ANOVA), and regression analysis.
The t tests were used to calculate inter-platform WER differences
between the d/Dhh group and NH group; ANOVA was used to
compare WER differences among more granular speaker sub-
groups. We performed regressions and Mahalanobis distance
matching21 to calculate the effect of being in the d/Dhh subgroup
on WER, accounting for speaker demographic characteristics and
passage characteristics.

RESULTS

Average Word Error Rate
The results of the average WER calculation for the

four APIs are shown in Table II. The average WER from
the four APIs on the d/Dhh group was 52.6%. WERs by
API were 45.1%, 52.3%, 55.7%, and 57.3% for OpenAI
Whisper, Amazon AWS, Google Chirp, and Microsoft

Azure, respectively. The average WER from the four APIs
on the NH group was 5.0%, more than 10 times lower than
the d/Dhh group WER (WERs by API were 3.8%, 4.3%,
5.9%, and 5.9% for Whisper, AWS, Chirp, and Azure,
respectively). Each of the four ASRs yielded statistically
significantly worse performance for the d/Dhh group as
compared to the NH group (t-tests: all p < 0.001). Further-
more, while no statistically significant inter-platform dif-
ferences were identified in pairwise comparisons of d/Dhh
WER across Amazon AWS, Google Chirp, and Microsoft
Azure (0.12 < p < 0.68), the OpenAI Whisper d/Dhh WER
was found to perform statistically significantly better rela-
tive to the other three API services (p = 0.061, p = 0.004,
and p = 0.001, respectively; Figure S1 shows WER distri-
butions by ASR service comparing d/Dhh and NH groups).
In addition, Table S3 provides a WER comparison of the
four APIs with and without the 25 MB size limit. When
separated by gender, the average WER for the female
d/Dhh versus NH group were 55.2% versus 2.8%, 61.6%
versus 3.0%, 62.4% versus 4.4%, and 66.9% versus 4.2%;
and male d/Dhh versus NH group were 13.4% versus 5.2%,
23.1% versus 6.2%, 34.5% versus 7.9%, and 26.9% versus
8.3% for Whisper, AWS, Chirp, and Azure, respectively
(see Table S5). These results, however, are confounded by
the fact that the average age of the female d/Dhh popula-
tion was older than the male d/Dhh population (53.7 years
vs. 52.0 years), while the average age of the female NH
population was younger than the male NH population
(24.5 years vs. 29.9 years).

It remained the case that d/Dhh groups yielded
higher WER across APIs when controlling for speaker
characteristics. Our linear regression model (adjusting for
participant age, gender, number of words in read passage,
and API) estimates that being in the d/Dhh group relative
to the NH group, all else equal, increases expected WER
by 21.7, 26.2, 28.9, and 29.8 percentage points for OpenAI
Whisper, Amazon AWS, Google Chirp, and Microsoft
Azure, respectively (see Table S6). On a Mahalanobis
matched subsample of 54 audio files (27 d/Dhh and
27 NH) spoken by speakers of the same gender and read-
ing the same passage, and close in age, we observe an
even larger difference in WER between d/Dhh versus NH
groups (59.9% vs. 4.0%, 67.3% vs. 3.9%, 59.8% vs. 5.6%,
and 71.4% vs. 5.2% for Whisper, AWS, Chirp, and Azure,
respectively; see Table S7). Notably, the matched sub-
sample of d/Dhh individuals consists of three high,
13 medium, and 11 low SIC audio files.

TABLE II.
Average Word Error Rate for Four Automatic Speech Recognition

Systems.

Automatic Speech
Recognition Models

d/Deaf and Hard of
Hearing Group

Normal Hearing
Group

OpenAI Whisper 45.1% 3.8%

Google Chirp 55.7% 5.9%

Microsoft Azure 57.3% 5.9%

Amazon AWS 52.3% 4.3%

Average 52.6% 5.0%
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Subgroup Analysis
The results comparing the three subgroups are

depicted in Table III, Figures 1–3. There were significant
differences (ANOVA p < 0.001) among the speech intelli-
gibility classification groups for all four APIs (Fig. 1).
However, while the pairwise difference in WER was
found to be statistically significant between low SIC and
NH groups, and between medium SIC and NH groups,
this was not consistently true between high SIC and NH
groups. In particular, no significant difference was
detected for AWS or Azure (p = 0.986 and 0.127, respec-
tively); Whisper had a significantly lower WER
(p = 0.001) while Chirp had a significantly higher
WER (p < 0.001) for the high SIC group versus the NH
group. Differences in WER distributions across SIC
groups by ASR are shown in Figure S2. As per Table IV,
our regression analysis (with standard errors clustered
by participant) shows a statistically significant increase
in WER for speakers in the low SIC (p < 0.001) and
medium SIC group (p = 0.002) relative to the NH group,
but a nonsignificant change (p = 0.830) in WER for

speakers in the high SIC group relative to the NH group.
Adjusting for participant age, gender, number of words in
read passage and API, this linear model estimates that,
all else equal, being in the low SIC group relative to the
NH group increases expected WER by 64.33, 68.86, 71.50,
and 72.48 percentage points for OpenAI Whisper, Ama-
zon AWS, Google Chirp, and Microsoft Azure, respec-
tively. For the medium SIC group, the expected increase
in WER relative to the NH group is 26.50, 31.03, 33.67,
and 34.65 percentage points, for the same four ASRs,
respectively. For the high SIC group, there is nearly no
difference in expected WER relative to the NH group,
with �1.56, 2.97, 5.61, and 6.59 change in WER for the
same four ASRs, respectively.

We further provide evidence that low ASR
performance on the d/Dhh population stems from API
inadequacy in parsing lower SIC speech; we measured
this using two other subgroup variables: onset of HL and
communication mode (Figs 2 and 3). In regression analy-
sis (see Tables S8 and S9), we found significantly higher
WER for speakers with prelingual HL onset relative to

TABLE III.
Average Word Error Rate by Speech Intelligibility Classification,

Onset of Hearing Loss, and Communication Mode.

Average WER Across APIs

Speech intelligibility classification

High 9.5%

Medium 46.6%

Low 85.9%

Communication mode

Oral 19.7%

Oral and sign 51.5%

Sign only 70.2%

Onset of hearing loss

Postlingual 37.1%

Prelingual 80.5%

Fig. 1. Mean Word Error Rate by speech intelligibility classification.
[Color figure can be viewed in the online issue, which is available at
www.laryngoscope.com.]

Fig. 2. Mean Word Error Rate by onset of hearing loss. [Color figure
can be viewed in the online issue, which is available at www.
laryngoscope.com.]

Fig. 3. Mean Word Error Rate by communication mode. [Color fig-
ure can be viewed in the online issue, which is available at www.
laryngoscope.com.]
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the NH group (β = 48.7, p = 0.002), but no statistically
significant coefficient for speakers with postlingual HL
onset relative to the NH group (β = 15.2, p = 0.14). Simi-
larly, we found statistically significantly higher WER for
speakers with sign language only as communication mode
relative to the NH group (β = 40.8, p = 0.002), but close
to significant coefficients for speakers communicating
with oral and sign (β = 21.8, p = 0.066), and nonsignifi-
cant coefficients for speakers communicating only orally
(β = �3.0, p = 0.801). For WER distributions by ASR ser-
vice by onset of HL or communication mode, see
Figures S3 and S4, respectively.

DISCUSSION
In this study, we investigated state-of-the-art com-

mercial ASR performance on speech produced by d/Dhh
individuals, revealing an average WER that was roughly
10 times higher compared to speech produced by NH indi-
viduals. This means that while roughly one out of every
20 words from NH was mistranscribed, roughly
every other word spoken by d/Dhh speakers was tran-
scribed incorrectly. In further subgroup analysis, we iden-
tified that ASR systems specifically underperformed for
d/Dhh “low” and “medium” SIC groups, whereas the
“high” SIC group had comparable performance to the NH
for all API systems except for Google Chirp due to ASR-
specific transcription errors (see Figure S2).

Among the three SIC subgroups, all four ASR sys-
tems had the lowest average WER (i.e., highest perfor-
mance) for speakers in the high SIC subgroup. High
speech intelligibility has been associated with cochlear
implantation, especially bilateral implantation,22–25

access to speech-language pathology services,26,27 and
family socioeconomic status.28 There is great variability
in speech intelligibility between d/Dhh individuals. Even
trained professionals may have difficulty understanding

d/Dhh speech,29 and this is especially true for individuals
in the medium and low speech intelligibility subgroups.

The most comparable study to ours is one
conducted 5 years ago: researchers at the Rochester Insti-
tute of Technology (RIT) and the National Technical
Institute for the Deaf evaluated a limited number of out-
dated ASR systems’ performance on speech from d/Dhh
individuals.19 Specifically, Microsoft Translator Speech
API, Presentation Translator for Microsoft PowerPoint,
and IBM Watson Speech to Text ASRs were audited on
speech data from 650 d/Dhh students reading standard-
ized passages.19 Similar to our results, the study found
that the mean WER for the d/Dhh population was above
45% across the tested ASRs, and that d/Dhh individuals
with less than the highest speech intelligibility (classified
as “good” in the RIT study) had lower ASR performance
compared to the NH group. In contrast, our work finds
that ASR performance can be comparable between NH
and high SIC speakers, which is an improvement from
the previous study (wherein the “good” SIC subgroup was
found to perform significantly worse than the NH group).

Notably, the aforementioned study was conducted
prior to the development of OpenAI Whisper,30 a state-of-
the-art ASR system using generative AI modeling. Of the
ASR systems we audited, OpenAI Whisper exhibited
the lowest WER for both the d/Dhh group and the NH
group, outperforming Amazon AWS, Google Chirp, and
Microsoft Azure. Despite this high overall performance,
there remained statistically significant differences in
Whisper’s WERs between d/Dhh and NH groups with
WER approximately 10 times higher for the d/Dhh group
in our main analysis, and 15 times higher in our
demographic-matched analysis. Furthermore, the Whis-
per transcriptions included hallucinated text not uttered
in the audio,31 a serious text-level concern that is masked
by only reporting averaged WERs, which warrants fur-
ther research in improving ASR performance on d/Dhh
specific speech.32

In the additional subgroup analyses, the group with
postlingual HL onset exhibited lower WER (i.e., better
performance) than the group with prelingual HL onset.
The latter also exhibited statistically significantly higher
WER than the NH group, consistent across all ASRs stud-
ied. This is consistent with previous research on age of
HL onset, with findings that individuals with postlingual
HL onset who have some prior exposure to oral speech
and associated speech development tend to exhibit fewer
omission, substitution, and place of articulation
errors.13,14 By modes of communication, the oral commu-
nication group exhibited the lowest average WER
(i.e., best performance), followed by the oral and sign com-
munication group, and the sign-only communication
group. All three subgroups had higher average WERs
than the NH group, with a strongly significant difference
between the sign-only group and NH group, and a close to
significant difference between the oral and sign group
and NH group. These findings highlight the need to
improve ASR performance on d/Dhh speech, as individ-
uals relying on some oral communication could benefit
greatly from voice-based functions when interacting with
technology platforms, which are considered critical

TABLE IV.
Regression Analysis of Word Error Rate by Participant

Demographic and Automatic Speech Recognition With Clustered
SE on Participant (Reference Levels are the Normal Hearing Group

and OpenAI Whisper ASR).

Covariate Estimate SE p-Value

Intercept �0.1661* 0.0827 0.0447

High SIC �0.0156 0.0724 0.8298

Medium SIC 0.265** 0.0868 0.0023

Low SIC 0.6433*** 0.1485 <0.0001

Age 0.0062* 0.003 0.0387

Male 0.1841* 0.0929 0.0477

Word count in ground truth 0.0000 0.0000 0.3883

Amazon AWS ASR 0.0453* 0.0223 0.0421

Google Chirp ASR 0.0717* 0.0295 0.0152

Microsoft Azure ASR 0.0815** 0.0252 0.0012

Age * Male interaction �0.0052 0.0028 0.0639

*significant (p < 0.05).
**very significant (p < 0.01).
***extremely significant (p < 0.001).
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accessibility features for those with limited literacy or
with a disability limiting the ability to interact with a tra-
ditional keyboard.

Our study highlights the urgent need for technology
companies—that often promote their focus on accessibil-
ity features—to include more diverse speech data in the
training datasets for ASR systems.1,33,34 ASR in the form
of real-time captioning is in high demand within the
d/Dhh community. For instance, one university noted a
68% increase in classroom instructions captioned from
15,440 h in 2007 to 25,978 h in 2019.35,36 Given the grow-
ing reliance of d/Dhh individuals on ASR for receptive
communication, it is critical to promote effective ASR to
support expressive communication for those with oral
skills as well as truly foster technological equity in this
diverse population.

There are several limitations to our study. First, we
were limited by the small sample size and nature of the
SPAL database, potentially affecting the external validity
of the findings. If anything, our WER estimates are con-
servative due to the read speech provided by SPAL, as
spontaneous speech (not read off a script) tends to yield
worse WERs.37 Second, the Whisper API has a 25 MB
size limit, so our analysis is focused on relatively smaller
file sizes. Again, this means that our WER estimates are
conservative since larger file sizes tended to have worse
WERs (see Table S3 for Google, Amazon, and Microsoft
WERs on the non-truncated 850 audio files). Future stud-
ies may focus on training ASR models using additional or
upsampled d/Dhh speech data, and evaluating ASR per-
formance on d/Dhh groups with greater socioeconomic
diversity and more granular information on intelligibility
levels.

CONCLUSION
This is the first study to investigate the performance

of contemporary ASR systems on d/Dhh speech. Our
results suggest that the ASR system APIs perform worse
with d/Dhh speech than speech from the NH group, par-
ticularly when speech intelligibility is considered medium
or low by human experts. Our findings suggest that while
Big Tech companies advertise accessibility as a market-
ing strategy, their ASR systems perform poorly with a
large portion of the d/Dhh population. This demonstrates
the need for more advanced machine learning models
trained ethically on d/Dhh audio data—in particular, on a
heterogeneous set of d/Dhh speech—to uphold their prom-
ise of accessibility.
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